4,428 research outputs found

    Coronal propagation of solar flare particles observed by satellite

    Get PDF
    Propagation of solar flare particles in corona was studied using the satellite data at the geostationary orbit. by selecting very fast rise time events only, the interplanetary propagation were assumed to be scatter free arrival. The results show that the propagation in corona does not depend on particle energy in 4 to 500 MeV protons, and the time delays from optical flare do not depend on the distance between the flare site and the base of the interplanetary magnetic field which connects to the Earth

    Evolution of Low- and Intermediate-Mass Stars with [Fe/H] <= -2.5

    Full text link
    We present extensive sets of stellar models for 0.8-9.0Msun in mass and -5 <= [Fe/H] <= -2 and Z = 0 in metallicity. The present work focuses on the evolutionary characteristics of hydrogen mixing into the He-flash convective zones during the core and shell He flashes which occurs for the models with [Fe/H] <~ -2.5. Evolution is followed from the zero age MS to the TPAGB phase including the hydrogen engulfment by the He-flash convection during the RGB or AGB phase. There exist various types of mixing episodes of how the H mixing sets in and how it affects the final abundances at the surface. In particular, we find H ingestion events without dredge-ups that enables repeated neutron-capture nucleosynthesis in the He flash convective zones with 13 C(a,n)16 O as neutron source. For Z = 0, the mixing and dredge-up processes vary with the initial mass, which results in different final abundances in the surface. We investigate the occurrence of these events for various initial mass and metallicity to find the metallicity dependence for the He-flash driven deep mixing (He-FDDM) and also for the third dredge-up (TDU) events. In our models, we find He-FDDM for M <= 3Msun for Z = 0 and for M <~ 2Msun for -5 <~ [Fe/H] <~ -3. On the other hand, the occurrence of the TDU is limited to the mass range of ~1.5Msun to ~5Msun for [Fe/H] = -3, which narrows with decreasing metallicity. The paper also discusses the implications of the results of model computations for observations. We compared the abundance pattern of CNO abundances with observed metal-poor stars. The origins of most iron-deficient stars are discussed by assuming that these stars are affected by binary mass transfer. We also point out the existence of a blue horizontal branch for -4 <~ [Fe/H] <~ -2.5.Comment: 19 pages, 12 figures, accepted by MNRA

    The origin of HE0107-5240 and the production of O and Na in extremely metal-poor stars

    Full text link
    We elaborate the binary scenario for the origin of HE0107-5240, the most metal-poor star yet observed ([Fe/H] = -5.3), using current knowledge of the evolution of extremely metal-poor stars. From the observed C/N value, we estimate the binary separation and period. Nucleosynthesis in a helium convective zone into which hydrogen has been injected allows us to discuss the origin of surface O and Na as well as the abundance distribution of s-process elements. We can explain the observed abundances of 12C, 13C, N, O, and Na and predict future observations to validate the Pop III nature of HE0107-5240.Comment: 4 pages, 3 figures, proceedings of the conference, "Nuclei in the Cosmos VIII", Nuclear Physics A in pres

    Critical Behavior in Doping-Driven Metal-Insulator Transition on Single-Crystalline Organic Mott-FET

    Full text link
    We present the carrier transport properties in the vicinity of a doping-driven Mott transition observed at a field-effect transistor (FET) channel using a single crystal of the typical two-dimensional organic Mott insulator κ\kappa-(BEDT-TTF)2_2CuN(CN)2_2Cl (κ\kappa-Cl).The FET shows a continuous metal-insulator transition (MIT) as electrostatic doping proceeds. The phase transition appears to involve two-step crossovers, one in Hall measurement and the other in conductivity measurement. The crossover in conductivity occurs around the conductance quantum e2/he^2/h , and hence is not associated with "bad metal" behavior, which is in stark contrast to the MIT in half-filled organic Mott insulators or that in doped inorganic Mott insulators. Through in-depth scaling analysis of the conductivity, it is found that the above carrier transport properties in the vicinity of the MIT can be described by a high-temperature Mott quantum critical crossover, which is theoretically argued to be a ubiquitous feature of various types of Mott transitions. [This document is the unedited Authors' version of a Submitted Work that was subsequently accepted for publication in Nano Letters, copyright \copyright American Chemical Society after peer review. To access the final edited and published work see http://dx.doi.org/10.1021/acs.nanolett.6b03817]Comment: 40 pages, 16 figures in Nano Letters, ASAP (2017

    Carbon burning in intermediate mass primordial stars

    Full text link
    The evolution of a zero metallicity 9 M_s star is computed, analyzed and compared with that of a solar metallicity star of identical ZAMS mass. Our computations range from the main sequence until the formation of a massive oxygen-neon white dwarf. Special attention has been payed to carbon burning in conditions of partial degeneracy as well as to the subsequent thermally pulsing Super-AGB phase. The latter develops in a fashion very similar to that of a solar metallicity 9 M_s star, as a consequence of the significant enrichment in metals of the stellar envelope that ensues due to the so-called third dredge-up episode. The abundances in mass of the main isotopes in the final ONe core resulting from the evolution are X(^{16}O) approx 0.59, X(^{20}Ne) approx 0.28 and X(^{24}Mg) approx 0.05. This core is surrounded by a 0.05 M_s buffer mainly composed of carbon and oxygen, and on top of it a He envelope of mass 10^{-4} M_sComment: 11 pages, 11 figures, accepted for publication in A&

    Development of a Large-Area Aerogel Cherenkov Counter Onboard BESS

    Get PDF
    This paper describes the development of a threshold type aerogel Cherenkov counter with a large sensitive area of 0.6 m2^2 to be carried onboard the BESS rigidity spectrometer to detect cosmic-ray antiprotons. The design incorporates a large diffusion box containing 46 finemesh photomultipliers, with special attention being paid to achieving good performance under a magnetic field and providing sufficient endurance while minimizing material usage. The refractive index of the aerogel was chosen to be 1.03. By utilizing the muons and protons accumulated during the cosmic-ray measurements at sea level, a rejection factor of 104^4 was obtained against muons with β1\beta \approx 1, while keeping 97% efficiency for protons below the threshold.Comment: 13 pages, LaTex, 9 eps figures included, submitted to NIM

    Electron scattering in isotonic chains as a probe of the proton shell structure of unstable nuclei

    Get PDF
    Electron scattering on unstable nuclei is planned in future facilities of the GSI and RIKEN upgrades. Motivated by this fact, we study theoretical predictions for elastic electron scattering in the N=82, N=50, and N=14 isotonic chains from very proton-deficient to very proton-rich isotones. We compute the scattering observables by performing Dirac partial-wave calculations. The charge density of the nucleus is obtained with a covariant nuclear mean-field model that accounts for the low-energy electromagnetic structure of the nucleon. For the discussion of the dependence of scattering observables at low-momentum transfer on the gross properties of the charge density, we fit Helm model distributions to the self-consistent mean-field densities. We find that the changes shown by the electric charge form factor along each isotonic chain are strongly correlated with the underlying proton shell structure of the isotones. We conclude that elastic electron scattering experiments in isotones can provide valuable information about the filling order and occupation of the single-particle levels of protons.Comment: 13 pages; 19 figure

    Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars II. s-process nucleosynthesis during the core He flash

    Full text link
    Models of primordial and hyper-metal-poor stars with masses similar to the Sun experience an ingestion of protons into the hot core during the core helium flash phase at the end of their red giant branch evolution. This produces a concurrent secondary flash powered by hydrogen burning that gives rise to further nucleosynthesis in the core. We perform post-process nucleosynthesis calculations on a one-dimensional stellar evolution calculation of a star of 1 solar mass and metallicity [Fe/H] = -6.5 that suffers a proton ingestion episode. Our network includes 320 nuclear species and 2,366 reactions and treats mixing and burning simultaneously. The mixing and burning of protons into the hot convective core leads to the production of 13C, which then burns via the 13C(alpha,n)16O reaction releasing a large number of free neutrons. During the first two years of neutron production the neutron poison 14N abundance is low, allowing the prodigious production of heavy elements such as strontium, barium, and lead via slow neutron captures (the s process). These nucleosynthetic products are later mixed to the stellar surface and ejected via stellar winds. We compare our results with observations of the hyper-metal-poor halo star HE 1327-2326, which shows a strong Sr overabundance. Our model provides the possibility of self-consistently explaining the Sr overabundance in HE 1327-2326 together with its C, N, and O overabundances (all within a factor of ~4) if the material were heavily diluted, for example, via mass transfer in a wide binary system. The model produces at least 18 times too much Ba than observed, but this may be within the large modelling uncertainties. In this scenario, binary systems of low mass must have formed in the early Universe. If true then this puts constraints on the primordial initial mass function.Comment: Accepted for publication on Astronomy & Astrophysics Letter
    corecore